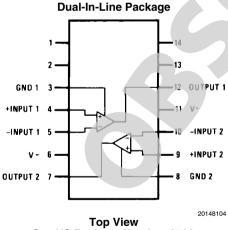


High Speed Dual Comparator

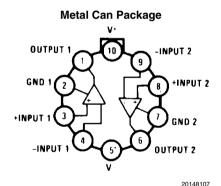
General Description

The LM119 is a precision high speed dual comparator fabricated on a single monolithic chip. It is designed to operate over a wide range of supply voltages down to a single 5V logic supply and ground. Further, it has higher gain and lower input currents than devices such as the LM710. The uncommitted collector of the output stage makes the LM119 compatible with RTL, DTL and TTL as well as capable of driving lamps and relays at currents up to 25 mA.

Although designed primarily for applications requiring operation from digital logic supplies, the LM119 is fully specified for power supplies up to \pm 15V. It features faster response than the LM111 at the expense of higher power dissipation. However, the high speed, wide operating voltage range and low package count make the LM119 much more versatile than older devices such as the LM711.


Features

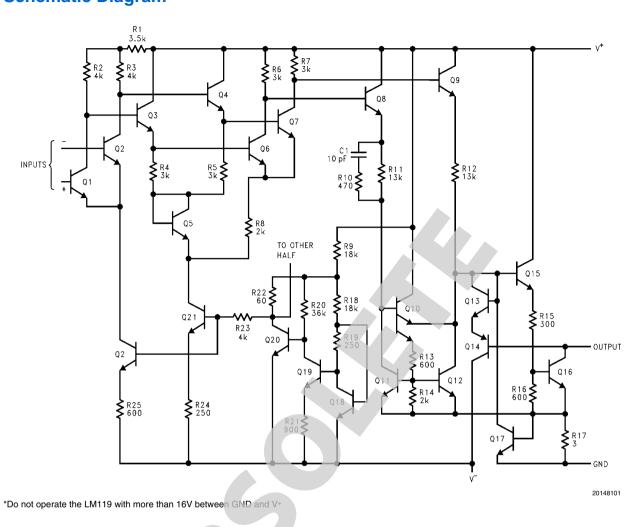
- Two independent comparators
- Operates from a single 5V supply
- Typically 80 ns response time at ±15V
- Minimum fan-out of 2 each side
- Maximum input current of 1 µA over temperature
- Inputs and outputs can be isolated from system ground
- High common mode slew rate


Ordering Information	Ordering	y Informatic	n
----------------------	----------	--------------	---

NS Part Number	JAN Part Number	NS Package Number	Package Description
JL119BIA	JM38510/10306BIA	H10C	10LD T0-100 Metal Can
JL119BCA	JM38510/10306BCA	J14A	14LD CERDIP

Connection Diagrams

See NS Package Number J14A



Case is connected to pin 5 (V-)

Top View See NS Package Number H10C

© 2010 National Semiconductor Corporation 201481

Schematic Diagram

Absolute Maximum Ratings (Note 1)

Total Supply Voltage	36V
Output to Negative Supply Voltage	36V
Ground to Negative Supply Voltage	25V
Ground to Positive Supply Voltage	18V
Differential Input Voltage	±5V
Input Voltage (<i>Note 3</i>)	±15V
Power Dissipation (<i>Note 2</i>)	500 mW
Output Short Circuit Duration	10 sec
Storage Temperature Range	$-65^{\circ}C \le T_{A} \le 150^{\circ}C$
Operating Ambient Temperature Range	$-55^{\circ}C \le T_{A} \le 125^{\circ}C$
Maximum Junction Temperature (T _J)	150°C
Lead Temperature (Soldering, 10 sec.)	260°C
Thermal Resistance	
θ _{JA}	
H Package (Still Air)	162°C/W
H Package (500LF/Min Air flow)	88°C/W
J Package (Still Air)	94°C/W
J Package (500LF/Min Air flow)	52°C/W
θ _{JC}	
H Package	31°C/W
J Package	11°C/W
Package Weight	
H Package	TBD
J Package	TBD
ESD rating (<i>Note 4</i>)	800V

Quality Conformance Inspection Mil-Std-883, Method 5005 - Group A

Subgroup	Description	Temp °C
1	Static tests at	25
2	Static tests at	125
3	Static tests at	-55
4	Dynamic tests at	25
5	Dynamic tests at	125
6	Dynamic tests at	-55
7	Functional tests at	25
8A	Functional tests at	125
8B	Functional tests at	-55
9	Switching tests at	25
10	Switching tests at	125
11	Switching tests at	-55
12	Settling time at	25
13	Settling time at	125
14	Settling time at	-55

Electrical Characteristics

DC Parameters

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
V _{IO}	Input Offset Voltage	$+V_{CC} = 15V, -V_{CC} = -15V,$		-4.0	4.0	mV	1
		$V_{CM} = 0V, R_S = 50\Omega$		-7.0	7.0	mV	2, 3
		$+V_{CC} = 27V, -V_{CC} = -3V,$		-4.0	4.0	mV	1
		$V_{CM} = -12V, R_{S} = 50\Omega$		-7.0	7.0	mV	2, 3
		$+V_{CC} = 3V, -V_{CC} = -27V,$		-4.0	4.0	mV	1
		V _{CM} = 12V, R _S = 50Ω		-7.0	7.0	mV	2, 3
		$+V_{CC} = 2.5V, -V_{CC} = -2.5V,$		-4.0	4.0	mV	1
		$V_{CM} = 2.5V, R_{S} = 50\Omega$		-7.0	7.0	mV	2, 3
I _{IO}	Input Offset Current	$+V_{CC} = 15V, -V_{CC} = -15V,$		-75	+75	nA	1, 2
		$V_{CM} = 0V$		-100	+100	nA	3
		$+V_{CC} = 27V, -V_{CC} = -3V,$		-75	+75	nA	1, 2
		$V_{CM} = -12V$		-100	+100	nA	3
		$+V_{CC} = 3V, -V_{CC} = -27V,$		-75	+75	nA	1, 2
		V _{CM} = 12V		-100	+100	nA	3
+I _{CC}	Power Supply Current	$+V_{CC} = 15V, -V_{CC} = -15V$	<u> </u>		10	mA	1, 2
					11.5	mA	3
-I _{CC}	Power Supply Current	+V _{CC} = 15V, -V _{CC} = -15V		-5.0		mA	1
			I	-4.5		mA	2
				-6.0		mA	3
±l _{IB}	Input Bias Current	$+V_{CC} = 15V, -V_{CC} = -15V,$		-0.1	500	nA	1, 2
		$V_{CM} = 0 \vee$		-0.1	1000	nA	3
		$+V_{CC} = 27V, -V_{CC} = -3V,$		-0.1	750	nA	1, 2
		$V_{CM} = -12V$		-0.1	1000	nA	3
		$+V_{CC} = 3V, -V_{CC} = -27V,$		-0.1	750	nA	1, 2
		$V_{CM} = 12V$		-0.1	1000	nA	3
CMRR	Common Mode Rejection	$-12V \le V_{CM} \le +12V,$ $-27V \le -V_{CC} \le -3V,$ $13V \le +V_{CC} \le 27V, R_{S} = 50\Omega$		90		dB	1, 2, 3
V _{OL}	Low Level Output Voltage	$+V_{CC} = 3.5V, -V_{CC} = -1V,$			0.4	V	1, 2
0L	Low Level Output Voltage	$V_{CM} = 1V, V_{IO} = 7mV,$ $I_{O} = 3.2mA$			0.6	V	3
		$+V_{CC} = 2.25V, -V_{CC} = -2.25V,$			0.4	V	1, 2
		V_{CM} =2.25V, V_{IO} = 7mV, I_O = 3.2mA			0.6	V	3
		$+V_{CC} = 27V, -V_{CC} = -3V,$ $V_{CM} = -12V, V_{IO} = 7mV,$ $I_{O} = 25mA$			1.5	V	1, 2, 3
		$+V_{CC} = 3V, -V_{CC} = -27V,$ $V_{CM} = 12V, V_{IO} = 7mV,$ $I_{O} = 25mA$			1.5	V	1, 2, 3
I _{CEX}	Output Leakage Current	$+V_{CC} = 18V, -V_{CC} = -18V,$		-1.0	2.0	μA	1
		$V_0 = 18V$		-1.0	10	μA	2
A _V	Voltage Gain (Collector)	+V _{CC} = 15V, -V _{CC} = -15V,	(<i>Note 5</i>)	10		К	4
		$V_0 = 1.5V$ to 11.5V	(Note 5)	5.0		К	5, 6

AC Parameters

The following conditions apply to all the following parameters, unless otherwise specified. AC: $\pm 15V$, C_L = 50pF

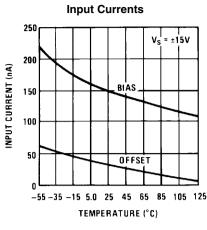
Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
tR _{LHC}	Response Time (Collector Output)	V _{OD} (overdrive) = +5mV, V _I = 100mV			125	nS	9
tR _{HLC}	Response Time (Collector Output)	V _{OD} (overdrive) = -5mV, V _I = 100mV			160	nS	9

DC Drift Parameters

Delta calculations performed at Group B-5

Symbol	Parameter	Conditions	Notes	Min	Мах	Unit	Sub- groups
V _{IO}	Input Offset Voltage	$+V_{CC} = 15V, -V_{CC} = -15V,$ V _{CM} = 0V, R _S = 50Ω		-1.0	1.0	mV	1
		$+V_{CC} = 27V, -V_{CC} = -3V,$ $V_{CM} = -12V, R_{S} = 50\Omega$		-1.0	1.0	mV	1
		$+V_{CC} = 3V, -V_{CC} = -27V,$ $V_{CM} = 12V, R_{S} = 50\Omega$		-1.0	1.0	mV	1
±l _{IB}	Input Bias Current	+V _{CC} = 15V, -V _{CC} = -15∨, V _{CM} = 0V		-50	50	nA	1
		+V _{CC} = 27V, -V _{CC} = -3V, V _{CM} = -12V		-50	50	nA	1
		$+V_{CC} = 3V, -V_{CC} = -27V,$ $V_{CM} = 12V$		-50	50	nA	1

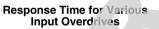
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

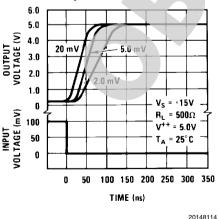

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.

Note 3: For supply voltages less than ±15V the absolute maximum input voltage is equal to the supply voltage.

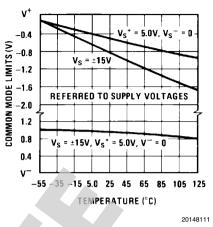
Note 4: Human Body model, $1.5K\Omega$ in series with 100pF.

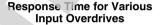
Note 5: K = V/mV.

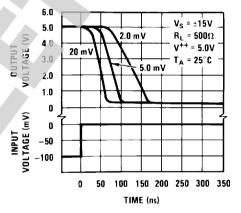

Typical Performance Characteristics

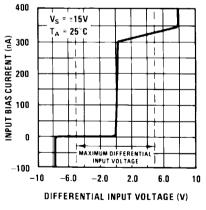


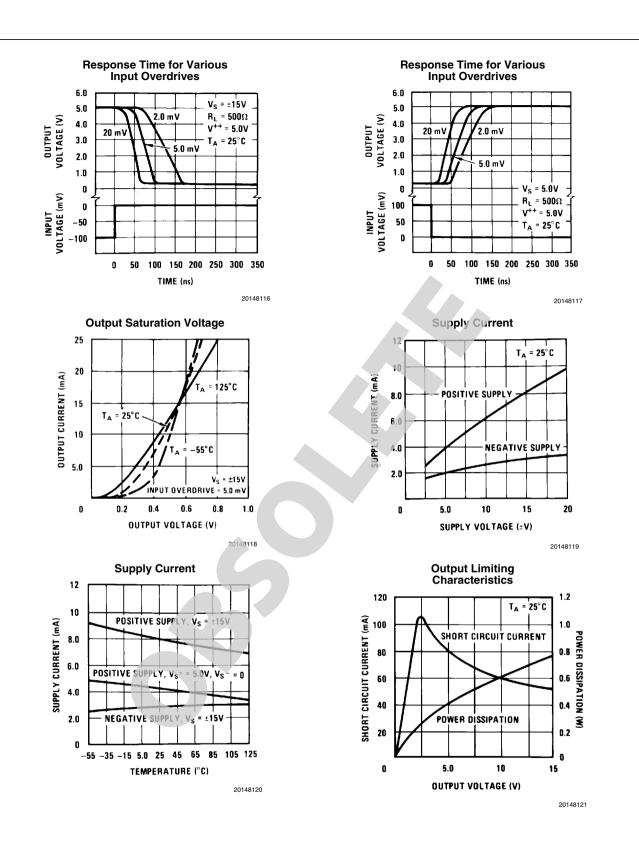
20148110



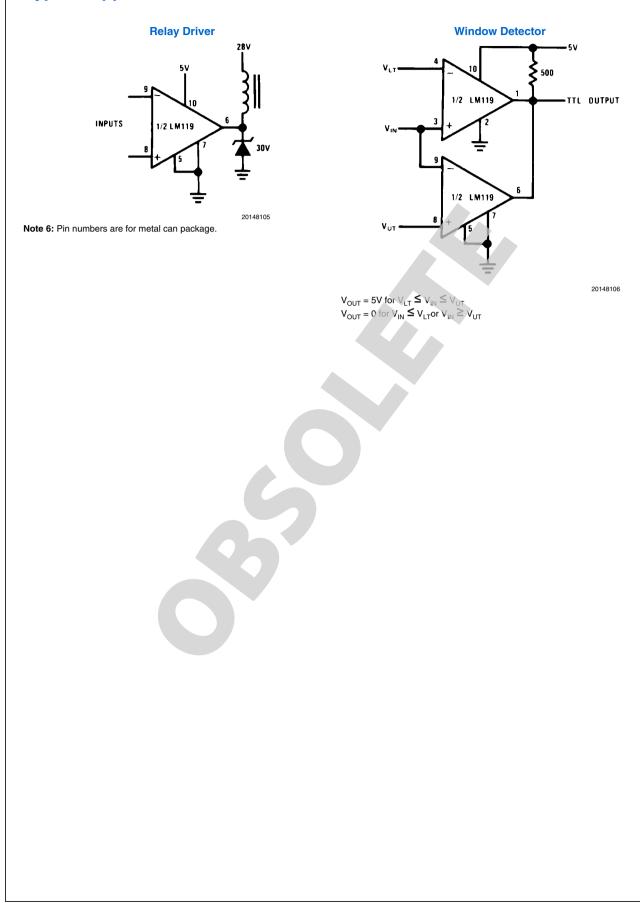

20148112



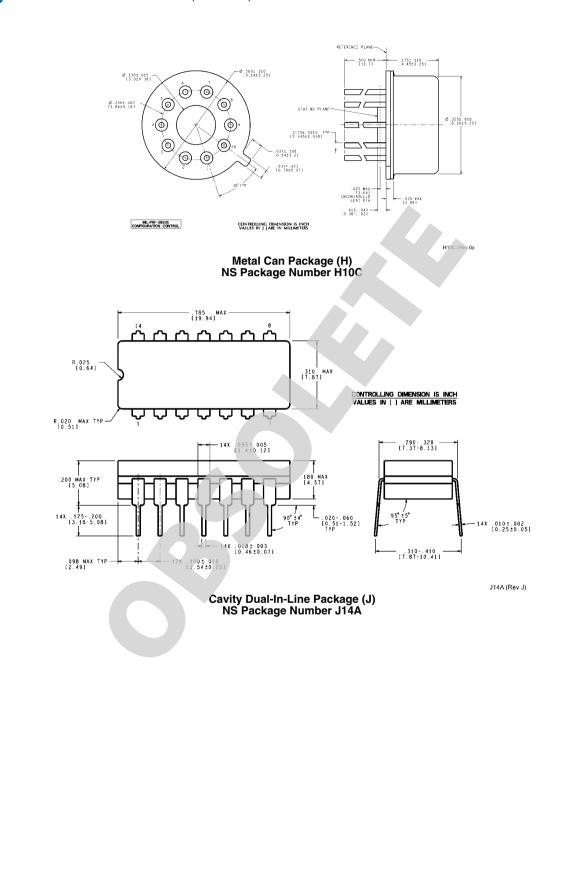


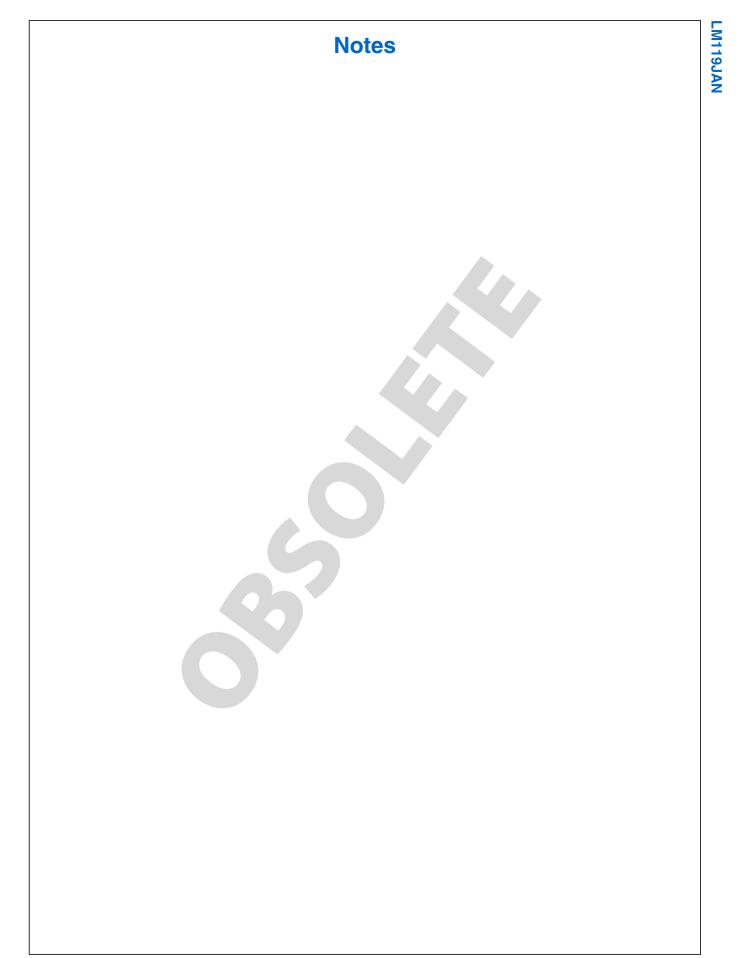


20148113


Input Characteristics

20148115


Typical Applications (Note Pin numbers are for metal can package.)



Revision History Section

Date Released Revision		Section	Changes		
7/0105	A	New release to corporate format	1 MDS datasheet converted into one corporate data		
			sheet format MJLM119-X Rev. 0BL will be archived.		
09/24/2010	В	Obsolete Data Sheet	Revision B, End of Life on Product/NSID Dec. 2009		
			Obsolete Data Sheet		

Physical Dimensions inches (millimeters) unless otherwise noted

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Products		Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS, PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS. NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com ww.national.com Tel: 1-800-272-9959

National Semiconductor Europe **Technical Support Center** Email: europe.support@nsc.com

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan **Technical Support Center** Email: ipn.feedback@nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated